
Software

technology

Build systems

Máté Cserép

ELTE, Faculty of Informatics

2020.

2

Build systems

Sample application

 Let’s have a sample Java application.

 The ThesisGenerator application can

generate thesis serial number for a

verbal examination.

 https://szofttech.inf.elte.hu/mate/thesisge

nerator-java

 Model-View architecture:

 thesisGenerator.model package:

UI independent business logic

 thesisGenerator.view package:

Swing based UI

 thesisGenerator package:

Main program

https://szofttech.inf.elte.hu/mate/thesisgenerator-java

3

Build systems

Compiling Java programs

mkdir dist

javac -d dist

src\thesisGenerator*.java

src\thesisGenerator\model*.java

src\thesisGenerator\view*.java

cd dist

jar -cfe thesis-generator.jar

thesisGenerator.ThesisGenerator

thesisGenerator*.class

thesisGenerator\model*.class

thesisGenerator\view*.class

java -jar thesis-generator.jar

4

Build systems

Compiling Java programs

 That was not simple for such a basic program with a few source

files all together.

 Problem statement:

 Compiling program manually with console commands can

easily can get difficult to manage even for smaller

applications with a couple source files.

Working with larger programs is becomes untrackable which

translation units require recompilation.

Recompiling the complete application can take a long

time for an enterprise application.

5

Build systems

Requirements towards build systems

 Compiling the code

Manage dependencies of compilation targets

 Packaging the binaries

 Support multiple release options

 Perform automatized tests

 Deploying the binaries to the test server

 Copying the code from one location to another

 Management of package repositories

6

Build systems - Ant

Features

 Imperative approach

 Typically used for Java projects

 XML-based build file

 Named build.xml by default

 Official website and tutorial:

 https://ant.apache.org/

 https://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html

 Installation:

 Windows installer can be downloaded from official website.

 UNIX systems: from package repository.

Debian/Ubuntu: apt-get install ant

 Together with an IDE, e.g. NetBeans installs Ant.

https://ant.apache.org/
https://ant.apache.org/manual/tutorial-HelloWorldWithAnt.html

7

Build systems - Ant

Build file (build.xml)

 The build.xml file contains a project root element, which sets:

 Name of the project

 Default target (discussed later)

 The base directory of the project, typically the current folder.

<?xml version="1.0" encoding="UTF-8"?>

<project name="projname"

default="deftarget"

basedir=".">

...

</project>

8

Build systems - Ant

Define a target

 Inside the project element multiple type of elements can be

defined. The most important are targets:

<project ...>

<target name="compile">

...

</target>

</project>

 Targets can be executed on the command line:
ant compile

9

Build systems - Ant

Directory creation

 Create a target which creates the classes directory for the

.class files to be compiled:

<project ...>

<target name="prepare">

<mkdir dir="classes"/>

</target>

</project>

 Command line:
ant prepare

10

Build systems - Ant

Target dependencies

 Define a target to compile all Java source files in the src

directory. Place the output inside the classes folder.

Make the compile target depend on the prepare target!

<project ...>

<target name="compile" depends="prepare">

<javac srcdir="src" destdir="classes"/>

</target>

</project>

 Command line:
ant compile

11

Build systems - Ant

Cleanup target

 Add a cleanup target, which removes all compilation binaries.

<project ...>

<target name="clean">

<delete>

<fileset dir="classes" includes="*"/>

</delete>

<delete dir="classes"/>

</target>

</project>

 Deleting the files are not required, removing the classes
folder removes its content recursively.

 Command line:
ant clean

12

Build systems - Ant

Cleanup target

 The failonerror attribute configures the target whether to

fail the complete process if that target fails.

<project ...>

<target name="clean" failonerror="false">

<delete dir="classes"/>

</target>

</project>

 Command line:
ant clean

13

Build systems - Ant

Properties

 Inside a project we can also defines properties.

 Properties are key-value pairs.

 Evaluated at runtime with the ${name} syntax.

<project ...>

<property name="jarname"

value="filename.jar" />

...

</project>

 There are also built-in properties, e.g. the ${basedir} is the

base project directory.

https://ant.apache.org/manual/properties.html

https://ant.apache.org/manual/properties.html

14

Build systems - Ant

Packaging

<project ...>

<target name="jar" depends="compile">

<jar destfile="${jarname}">

<fileset dir="classes">

<include name="*.class"/>

</fileset>

<manifest>

<attribute name="Main-Class" value="Main"/>

</manifest>

</jar>

</target>

</project>

 Note: it is important to set the entry point in the manifest!

15

Build systems - Ant

Target: complex example

<target name="compile" depends="prepare,init">

<javac destdir="build/classes" debug="on">

<src path="src1/java"/>

<src path="src2/java"/>

<include name="**/*.java"/>

<exclude name="com/comp/xyz/applet/*.java"/>

<classpath>

<fileset dir="lib">

<include name="*.jar"/>

</fileset>

</classpath>

</javac>

</target>

16

Build systems - Ant

Deploying (file operations)

 Deploy by copying the final binaries to a target destination:

<target name="install" depends="jar">

<mkdir dir="build/war/WEB-INF/lib"/>

<copy todir="build/war/WEB-INF/lib">

<fileset dir="lib">

<include name="*.jar"/>

<exclude name="servlet-api.jar"/>

<exclude name="catalina-ant.jar"/>

<exclude name="el-api.jar"/>

</fileset>

</copy>

</target>

 Command line:
ant install

17

Build systems - Ant

JVM launch

 A target for executing the compiled and packaged JAR file can

also be defined:

<target name="run" depends="compile">

<java jar="${jarname}" fork="true" />

</target>

 The fork attribute causes the task to run in a different

process, and a different Java virtual machine (JVM).

 Command line:
ant run

18

Build systems - Ant

JVM launch

 More complex example:

<target name="run">

<java classname="com.comp.foo.TestClient"

jvmargs="-Xdebug server=y,suspend=n">

<classpath>

<fileset dir="lib">

<include name="*.jar"/>

</fileset>

</classpath>

</java>

</target>

 Command line:
ant run

19

Build systems - Ant

Generating API documentation

<target name="doc">

<tstamp>

<format property="timestamp" pattern="d.M.yyyy"

locale="en"/>

</tstamp>

<mkdir dir="doc"/>

<javadoc sourcepath="src" destdir="doc"

windowtitle="Project documentation">

<header>Very Important Project</header>

<footer>Javadocs compiled ${timestamp}></footer>

<fileset dir="src/" includes="**/*.java" />

</javadoc>

</target>

20

Build systems - Ant

Complete build.xml file for the ThesisGenerator app

21

Build systems - Ant

NetBeans

 By default Netbeans uses Ant as a build system.

 build.xml is located in the project root

 references nbproject/build-impl.xml, which is generated by

Netbeans and shouldn’t be modified

 Targets as hooks can be definied in build.xml, which will be

called by Netbeans’s build process automatically:

-pre-init, -post-init, -pre-compile, -post-compile, -pre-jar,

-post-jar, -post-clean, etc.

22

Build systems - Maven

Features

 Software project management tool

 Building project, running tests, managing dependencies,
documentation

 Packages: automatic download of dependencies

 Declarative specification of the build process

 Fix, predefined directory structure, conventions

 Typically Java, but it can handle other language via plugins

 XML-based build file

 Named pom.xml by default

 Official website and a recommended tutorial:

 http://maven.apache.org/

 https://www.baeldung.com/maven

http://maven.apache.org/
https://www.baeldung.com/maven

23

Build systems - Maven

Installation

 Standalone installation

 Binaries are available on official website for download

 Simply extract it to a preferred location

 Set the MAVEN_HOME env. variable to point to this location

 Also ensure that the JAVA_HOME env. variable points to your

JDK installation folder

 Add the MAVEN_HOME\bin folder to your PATH.

 UNIX package repository installation

 Usually available

 Debian/Ubuntu: apt-get install maven

 Typically ships bundled with IDEs (e.g. NetBeans, IntelliJ)

24

Build systems - Maven

Project

 Project Object Model (POM)

 Project uniquely identified by project’s group, artifact Id,

version, the 3 abbreviated as GAV together

 Project can divided to multiple modules that can be handled

independently

25

Build systems - Maven

Project Object Model (pom.xml)

 The Project Object Model (pom.xml) is a specification of the

project’s all important information:

 identifiers: groupId, artifactId, version

 how the project is built

 result of the build

 test cases for the project

 dependencies of the project

26

Build systems - Maven

Project Object Model (pom.xml)

 The root element of the pom.xml file is also a project element.

 The following elements must be defined inside the project:

modelVersion: version of the POM specification

 groupId: unique base name of the company or group that

created the project. Group ID should follow Java's package

name rules. This means it starts with a reversed domain

name, e.g. hu.elte.inf

 artifactId: unique name of the project

 version: version of the project

 packaging: applied packaging method(default is jar,

other options: pom, maven-plugin, ejb, war, ear, rar, par)

27

Build systems - Maven

Project Object Model (pom.xml)

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.software</groupId>

<artifactId>app</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

...

</project>

28

Build systems - Maven

Directory structure

 A Maven project has a directory structure based on defined conventions.

 The default directory layout can be overridden using project
descriptors, but this is uncommon and discouraged.

29

Build systems - Maven

Directory structure override

<project>

...

<build>

<directory>target</directory>

<outputDirectory>classes</outputDirectory>

<finalName>${project.artifactId}-${project.version}</finalName>

<testOutputDirectory>test-classes</testOutputDirectory>

<sourceDirectory>src/main/java</sourceDirectory>

<scriptSourceDirectory>src/main/scripts

</scriptSourceDirectory>

<testSourceDirectory>/src/test/java</testSourceDirectory>

...

</build>

</project>

30

Build systems - Maven

Lifecycle phases

 Maven build system follows a specified lifecycle, consisted of

phases. The most important phases of the default lifecycle:

 validate: validate the project is correct and all necessary

information is available

 compile: compile the source code of the project

 test: test the compiled source code using a suitable unit

testing framework. These tests should not require the code

be packaged or deployed

 package: take the compiled code and package it in its

distributable format, such as a JAR.

 integration-test: process and deploy the package if

necessary into a testing environment where additional

integration tests can be run

31

Build systems - Maven

Lifecycle phases

 verify: run any checks to verify the package is valid and

meets quality criteria

 install: install the package into the local repository, for use

as a dependency in other projects locally

 deploy: done in an integration or release environment,

copies the final package to the remote repository for sharing

with other developers and projects.

 Further details:

http://maven.apache.org/guides/introduction/introduction-to-the-

lifecycle.html

 Command line: mvn install

 Performs the phases until install in the default lifecycle, but

not the deploy phase.

http://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html

32

Build systems - Maven

Lifecycle phases

 Beside the default lifecycle, there are other lifecycles, e.g. the

clean lifecycle, which can be used to purge previously built

binaries from a project.

 This lifecycle has 3 phases: pre-clean, clean, post-clean.

 Command line: mvn clean install

 Performs the clean and then the install phases and all

phases before them.

 Ultimately this will remove and rebuild all binaries.

33

Build systems - Maven

Goals

 Compilation phases consist of one or multiple goals

 The goal is a task that is related to the project’s compilation or

management

 The order of these goals depends on the phase’s binding

Many phases contain only one goal

 E.g. compile phase consists of the compiler:compile goal

 Not only phases, but goals can also be passed to the Maven

command, peforming only that goal without the previous phases

and their goals.

 E.g. mvn compiler:compile

 Custom phases and goals can be defined (in the pom.xml)

34

Build systems - Maven

Repositories

 A repository holds build artifacts and dependencies.

 The default local repository in the developer’s home folder:
~/.m2/repository

 If an artifact is available in the local repository, Maven uses it.

 Otherwise, it is downloaded from a central repository and stored
in the local repository.

 Network traffic and build time can be significantly increased
for the first build of a project.

 The default central repository is the Maven Central:
https://repo.maven.apache.org

Maven can be configured to which repositories and mirrors
to use in the ~/.m2/settings.xml file.

Companies often have internal central repositories.

https://repo.maven.apache.org/

35

Build systems - Maven

Result of build process

 target directory is created during compilation which stores the

new files that were generated at compilation time

 output, e.g. my-app-1.0-SNAPSHOT.jar

 classes directory: class files that were created during

compilation but not test classes

 test-classes: classes created from test sources

maven-archiver/pom.properties file that defines the

project’s GAV

 surefire-reports: reports of the tests

36

Build systems - Maven

Project hierarchies

 Maven supports submodule projects:

<project ...>

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>parent-app</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>pom</packaging>

<!-- subprojects -->

<modules>

<module>first-child-app</module>

<module>second-child-app</module>

</modules>

</project>

37

Build systems - Maven

Project hierarchies

 Submodule projects also reference their parents:

<project ...>

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>com.mycompany.app</groupId>

<artifactId>parent-app</artifactId>

<version>1.0-SNAPSHOT</version>

</parent>

<groupId>com.mycompany.app</groupId>

<artifactId>first-child-app</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>war</packaging>

...

</project>

38

Build systems - Maven

Plugins

 Maven’s functionality itself is limited to the basic, but it is a

pluginable framework.

 Many different plugins are available

 e.g. C++, LaTeX, ant build, javadoc, etc.

 The official plugins are listed on their website:

https://maven.apache.org/plugins/

 There are also 3rd party plugins and one can write own plugin

https://maven.apache.org/plugins/

39

Build systems - Maven

Plugin example: Javadoc

<project ...>

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-javadoc-plugin</artifactId>

<version>3.2.0</version>

<configuration>

...

</configuration>

</plugin>

</plugins>

</build>

...

</project>

 Generate documentation: mvn javadoc:javadoc or mvn:site

40

Build systems - Maven

Dependencies

 The external libraries that a project uses are called dependencies.

 The dependency management feature in Maven ensures automatic
download of those libraries from a central repository.

<project ...>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.13</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>

 GAV uniquely specifies the required artifact

 scope defines how we use the dependency

41

Build systems - Maven

Dependencies’ scope

 The most important scopes:

 compile: This is the default if unspecified. Dependencies

that required by the compilation

 runtime: Dependency required at runtime, but not required

at compilation time.

 test: Dependency is not required in production but it is

required for the compilation and execution of testcases.

42

Build systems - Maven

Search dependencies

 One can browse and search the available libraries in the Maven

Central repository:

 https://search.maven.org/

How to use

https://search.maven.org/

43

Build systems - Maven

Complete pom.xml file for the ThesisGenerator app

 NetBeans supports Maven-based projects.

44

Build systems - Maven

NetBeans

45

Build systems - Maven

IntelliJ

 IntelliJ IDEA supports a fully-functional integration with Maven.

 Generate Ant build file is also supported: Build -> Generate Ant Build

46

Build systems - Gradle

Features

 Build automation system with increasing popularity [1] [2]

 Aims to merge the best concepts from Ant and Maven

 Supports incremental builds

Major performance boost for larger enterprise projects

 Configuration through a Groovy-based domain-specific

language (DSL) instead of XML

 Official website: https://gradle.org/

 Tutorial:

https://docs.gradle.org/current/userguide/getting_started.html

[1] https://www.baeldung.com/java-in-2019

[2] https://www.jetbrains.com/lp/devecosystem-2019/java/

https://gradle.org/
https://docs.gradle.org/current/userguide/getting_started.html
https://www.baeldung.com/java-in-2019
https://www.jetbrains.com/lp/devecosystem-2019/java/

